Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Med Sci (Basel) ; 12(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390857

RESUMO

Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.


Assuntos
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/patologia , Leucodistrofia de Células Globoides/diagnóstico por imagem , Leucodistrofia de Células Globoides/patologia , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética
2.
Int J Dev Neurosci ; 84(1): 35-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848385

RESUMO

Metachromatic leukodystrophy (MLD) is a severe metabolic disorder caused by the deficient activity of arylsulfatase A due to ARSA gene mutations. According to the age of onset, MLD is classified into three forms: infantile, juvenile, and adult. In our study, we aimed to perform a genetic analysis for two siblings with juvenile MLD for a better characterization of the molecular mechanisms behind the disease. A consanguineous family including two MLD patients (PII.1 and PII.2) was enrolled in our study. The diagnosis was made based on the clinical and neuroimaging investigations. The sequencing of ARSA gene was performed followed by in silico analysis. Besides, the cis/trans distribution of the variants was verified through a PCR-RFLP. The ARSA gene sequencing revealed three known variants, two exonic c.1055A > G and c.1178C > G and an intronic one (c.1524 + 95A > G) in the 3'UTR region. All variants were present at heterozygous state in the two siblings and their mother. The assessment of the cis/trans distribution showed the presence of these variants in cis within the mother, while PII.2 and PII.2 present the c.1055A > G/c.1524 + 95A > G and the c.1178C > G in trans. Additionally, PII.1 harbored a de novo novel missense variant c.1119G > T, whose pathogenicity was supported by our predictive results. Our genetic findings, supported by a clinical examination, confirmed the affection of the mother by the adult MLD. Our results proved the implication of the variable distribution of the found variants in the age of MLD onset. Besides, we described a variable severity between the two siblings due to the de novo pathogenic variant. In conclusion, we identified a complex genotype of ARSA variants within two MLD siblings with a variable severity due to a de novo variant present in one of them. Our results allowed the establishment of an adult MLD diagnosis and highlighted the importance of an assessment of the trans/cis distribution in the cases of complex genotypes.


Assuntos
Leucodistrofia Metacromática , Adulto , Feminino , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Mutação/genética , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Genótipo , Fenótipo
3.
Mol Biol Rep ; 51(1): 30, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153581

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder caused by a deficiency of Arylsulfatase A (ARSA) enzyme activity. Its clinical manifestations include progressive motor and cognitive decline. ARSA gene mutations are frequent in MLD. METHODS AND RESULTS: In the present study, whole exome sequencing (WES) was employed to decipher the genetic cause of motor and cognitive decline in proband's of two consanguineous families from J&K (India). Clinical investigations using radiological and biochemical analysis revealed MLD-like features. WES confirmed a pathogenic variant in the ARSA gene. Molecular simulation dynamics was applied for structural characterization of the variant. CONCLUSION: We report the identification of a pathogenic missense variant (c.1174 C > T; p.Arg390Trp) in the ARSA gene in two cases of late infantile MLD from consanguineous families in Jammu and Kashmir, India. Our study utilized genetic analysis and molecular dynamics simulations to identify and investigate the structural consequences of this mutation. The molecular dynamics simulations revealed significant alterations in the structural dynamics, residue interactions, and stability of the ARSA protein harbouring the p.Arg390Trp mutation. These findings provide valuable insights into the molecular mechanisms underlying the pathogenicity of this variant in MLD.


Assuntos
Cerebrosídeo Sulfatase , Leucodistrofia Metacromática , Humanos , Cerebrosídeo Sulfatase/genética , Consanguinidade , Esterases , Índia , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Simulação de Dinâmica Molecular
4.
Neuropediatrics ; 54(4): 244-252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054976

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to progressive demyelination and, consecutively, to cognitive and motor decline. Brain magnetic resonance imaging (MRI) can detect affected white matter as T2 hyperintense areas but cannot quantify the gradual microstructural process of demyelination more accurately. Our study aimed to investigate the value of routine MR diffusion tensor imaging in assessing disease progression. METHODS: MR diffusion parameters (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) were in the frontal white matter, central region (CR), and posterior limb of the internal capsule in 111 MR datasets from a natural history study of 83 patients (age: 0.5-39.9 years; 35 late-infantile, 45 juvenile, 3 adult, with clinical diffusion sequences of different scanner manufacturers) as well as 120 controls. Results were correlated with clinical parameters reflecting motor and cognitive function. RESULTS: ADC values increase and FA values decrease depending on disease stage/severity. They show region-specific correlations with clinical parameters of motor and cognitive symptoms, respectively. Higher ADC levels in CR at diagnosis predicted a disease course with more rapid motor deterioration in juvenile MLD patients. In highly organized tissues such as the corticospinal tract, in particular, diffusion MR parameters were highly sensitive to MLD-associated changes and did not correlate with the visual quantification of T2 hyperintensities. CONCLUSION: Our results show that diffusion MRI can deliver valuable, robust, clinically meaningful, and easily obtainable/accessible/available parameters in the assessment of prognosis and progression of MLD. Therefore, it provides additional quantifiable information to established methods such as T2 hyperintensity.


Assuntos
Imagem de Tensor de Difusão , Leucodistrofia Metacromática , Adulto , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Imagem de Tensor de Difusão/métodos , Leucodistrofia Metacromática/diagnóstico por imagem , Relevância Clínica , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética
5.
Clin Neurol Neurosurg ; 224: 107543, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509016

RESUMO

Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disease. MLD can be divided into three clinical forms: late infantile, juvenile, and adult, with late infantile being the most common. Infantile MLD with unusual onset has been reported. In the study, we reported a case of late infantile MLD with basal nuclei lesions and cholecystitis as the initial findings, which further broadens late infantile MLD onset and contributes to early clinical diagnosis.


Assuntos
Colecistite , Leucodistrofia Metacromática , Adulto , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Gânglios da Base
6.
Neuroimage Clin ; 37: 103296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36563646

RESUMO

BACKGROUND AND PURPOSE: Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to demyelination and subsequently to a progressive decline in cognitive and motor function. It affects mainly white matter where changes during the course of the disease can be visualized on T2-weighted MRI as hyperintense areas. Associated changes in brain metabolism can be quantified by MR spectroscopy (MRS) and may give complementary information as biomarkers for disease characterisation and progression. Our study aimed to further investigate the correlation of MRS with clinical parameters for motor and cognitive function by using a model free MRS analysis approach that would be precise and straightforward to implement. MATERIALS AND METHODS: 53 MRS datasets derived from 29 patients (10 late-infantile, 19 juvenile) and 12 controls were acquired using a semi-LASER CSI sequence covering a slice through the centrum semiovale above the corpus callosum. We defined four regions of interest in the white matter (frontal white matter [FWM] and the cortico-spinal tract [CST] area, each left and right) and one in cortical grey matter. Spectra were analysed using a model and fitting free approach by calculating the definite integral of 10 intervals which were distributed along the whole spectrum. These 10 intervals were orientated towards the main peaks of the metabolites N-acetylaspartate (NAA), creatine, myo-inositol, choline, glutamine/glutamate and aspartate to approximately attribute changes in the intervals to corresponding metabolites. Their ratios to the main creatine peak integral were correlated with clinical parameters assessing motor and cognitive abilities. Furthermore, in a post-hoc analysis, NAA levels of a subset of 21 MR datasets were correlated to NAA levels in urine measured by 1H (proton) nuclear magnetic resonance (NMR) spectroscopy. The applied interval integration method was validated in the control cohort against the standard approach, using spectral profile templates of known metabolites (LCModel). Both methods showed good agreement, with coefficients of variance being slightly lower for our approach compared to the related LCModel results. Moreover, the new approach was able to extract information out of the frequency range around the main peaks of aspartate and glutamine where LCModel showed only few usable values for the respective metabolites. RESULTS: MLD spectra clearly differed from controls. The most pronounced differences were found in white matter (much less in grey matter), with larger values corresponding to main peaks of myo-inositol, choline and aspartate, and smaller values associated with NAA and glutamine. Late-infantile patients had more severe changes compared to later-onset patients, especially in intervals corresponding to NAA, aspartate, myo-inositol, choline and glutamine. There was a high correlation of several intervals in the corticospinal tract region with motor function (with the most relevant interval corresponding to NAA peak with a correlation coefficient of -0.75; p < 0.001), while cognitive function, by means of IQ, was found to be most correlating in frontal white matter corresponding to the NAA peak (r = 0.84, p < 0.001). The post-hoc analysis showed that the main NAA peak interval correlated negatively with the NAA in urine (r = -0.584, p < 0.001). CONCLUSION: The applied model and fitting free interval integration approach to analyse MRS data of a semi-LASER sequence at 3T suits well to detect and quantify pathological changes in MLD patients through the different courses of the disease and correlates well with clinical symptoms while showing smaller dimensions of variation compared to the more sophisticated single metabolite analysis using LCModel. NAA seems the most clinically meaningful biomarker to use in this context. Its correlation with urine measurements further underlines its potential as a clinically and biologically useful parameter of disease progression in MLD.


Assuntos
Glutamina , Leucodistrofia Metacromática , Humanos , Glutamina/metabolismo , Creatina/metabolismo , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Ácido Aspártico , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/patologia , Colina/metabolismo , Inositol/metabolismo
7.
Ann Clin Transl Neurol ; 9(12): 1999-2009, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334091

RESUMO

OBJECTIVES: Metachromatic leukodystrophy (MLD) has characteristic white matter (WM) changes on brain MRI, which often trigger biochemical and genetic confirmation of the diagnosis. In early or pre-symptomatic disease stages, these typical MRI changes might be absent, hampering early diagnosis. This study aims to describe the characteristics of MRI WM abnormalities at diagnosis, related to clinical presentation. METHODS: We retrospectively reviewed brain MRIs of MLD patients followed in 2 centers at the time of diagnosis regarding MLD MRI score and presence of tigroid pattern. In addition, MLD subtype, symptom status, CNS/PNS phenotype, motor/cognitive/mixed phenotype, and the presence of CNS symptoms were evaluated. RESULTS: We included 104 brain MRIs from patients with late-infantile (n = 43), early-juvenile (n = 24), late-juvenile (n = 20) and adult (n = 17) onset. Involvement of the corpus callosum was a characteristic early MRI sign and was present in 71% of the symptomatic late-infantile patients, 94% of the symptomatic early-juvenile patients and 100% of the symptomatic late-juvenile and adult patients. Symptomatic early-juvenile, late-juvenile and adult patients generally had WM abnormalities on MRI suggestive of MLD. By contrast, 47% of the early-symptomatic late-infantile patients had no or only mild WM abnormalities on MRI, even in the presence of CNS symptoms including pyramidal signs. INTERPRETATION: Patients with late-infantile MLD may have no or only mild, nonspecific abnormalities at brain MRI, partly suggestive of 'delayed myelination', even with clear clinical symptoms. This may lead to significant diagnostic delay. Knowledge of these early MRI signs (or their absence) is important for fast diagnosis.


Assuntos
Diagnóstico Tardio , Leucodistrofia Metacromática , Humanos , Estudos Retrospectivos , Leucodistrofia Metacromática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenótipo
8.
Eur J Paediatr Neurol ; 37: 87-93, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35152000

RESUMO

OBJECTIVES: Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease characterized by progressive demyelination within the central and peripheral nervous system. Rapid diagnosis is crucial in view of evolving therapeutic options. Strabismus has anecdotally been described as a feature in children with MLD. Our first aim was to examine the prevalence of strabismus as an early or even presenting sign of MLD in two nationwide cohorts. Second, we aimed to investigate the temporal relation between the onset of strabismus and gross motor deterioration, other early onset eye movement disorders and brain white matter abnormalities. METHODS: Clinical records of 204 MLD patients at the University Children's Hospital Tubingen and Amsterdam University Medical Center were reviewed on the presence of strabismus and other eye movement disorders. Gross motor deterioration and white matter abnormalities on brain MRI were evaluated by using the Gross Motor Function Classification in MLD and MLD LOES score, respectively. RESULTS: We identified strabismus as an early sign in MLD patients with the late-infantile form, with a prevalence of 27% (N = 17). The onset of strabismus preceded gross motor symptoms and brain white matter abnormalities in 71% and 46% respectively of the cases. Important characteristics were an acute-onset paralytic esotropia, partly accompanied by other eye movement abnormalities, and gadolinium enhancement of the cranial nerves. CONCLUSIONS: Acute-onset paralytic strabismus in toddlers should be considered a potential early sign of late-infantile MLD and might result from early cranial nerve involvement. Brain MRI with gadolinium contrast may facilitate early diagnosis.


Assuntos
Leucodistrofia Metacromática , Estrabismo , Meios de Contraste/uso terapêutico , Gadolínio/uso terapêutico , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estrabismo/diagnóstico , Estrabismo/etiologia
9.
Brain ; 145(1): 105-118, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398223

RESUMO

Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0-42 years) with 38 neurologically healthy children (aged 0-17 years) and 38 healthy adults (aged 18-45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6-56.7) and symptomatic patients (136, 40.8-445) compared to controls (5.6, 4.5-7.1), and highest among patients with late-infantile (456, 201-854) or early-juvenile metachromatic leukodystrophy (291.0, 104-445) and those ineligible for treatment based on best practice (291, 57.4-472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224-1150) compared to controls (119, 78.2-338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.


Assuntos
Leucodistrofia Metacromática , Biomarcadores , Criança , Proteína Glial Fibrilar Ácida , Humanos , Filamentos Intermediários , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/terapia , Imageamento por Ressonância Magnética , Proteínas de Neurofilamentos , Estudos Retrospectivos
12.
Clin Neuroradiol ; 31(4): 969-980, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33226437

RESUMO

PURPOSE: T2-weighted signal hyperintensities in white matter (WM) are a diagnostic finding in brain magnetic resonance imaging (MRI) of patients with metachromatic leukodystrophy (MLD). In our systematic investigation of the evolution of T2-hyperintensities in patients with the late-infantile form, we describe and characterize T2-pseudonormalization in the advanced stage of the natural disease course. METHODS: The volume of T2-hyperintensities was quantified in 34 MRIs of 27 children with late-infantile MLD (median age 2.25 years, range 0.5-5.2 years). In three children with the most advanced clinical course (age >4 years) and for whom the T2-pseudonormalization was the most pronounced, WM microstructure was investigated using a multimodal MRI protocol, including diffusion-weighted imaging, MR spectroscopy (MRS), myelin water fraction (MWF), magnetization transfer ratio (MTR), T1-mapping and quantitative susceptibility mapping. RESULTS: T2-hyperintensities in cerebral WM returned to normal in large areas of 3 patients in the advanced disease stage. Multimodal assessment of WM microstructure in areas with T2-pseudonormalization revealed highly decreased values for NAA, neurite density, isotropic water, mean and radial kurtosis, MWF and MTR, as well as increased radial diffusivity. CONCLUSION: In late-infantile MLD patients, we found T2-pseudonormalization in WM tissue with highly abnormal microstructure characterizing the most advanced disease stage. Pathological hallmarks might be a loss of myelin, but also neuronal loss as well as increased tissue density due to gliosis and accumulated storage material. These results suggest that a multimodal MRI protocol using more specific microstructural parameters than T2-weighted sequences should be used when evaluating the effect of treatment trials in MLD.


Assuntos
Leucodistrofia Metacromática , Substância Branca , Encéfalo/diagnóstico por imagem , Pré-Escolar , Humanos , Lactente , Leucodistrofia Metacromática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Bainha de Mielina , Substância Branca/diagnóstico por imagem
13.
Bioanalysis ; 12(22): 1621-1633, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33151743

RESUMO

Aim: Two separate LC-MS/MS assays were developed to quantitate sulfatides and lysosulfatide in human cerebrospinal fluid (CSF). Materials & methods: Lysosulfatide and the 15 most abundant sulfatide species were quantitated by LC-MS/MS using artificial CSF as surrogate matrix to prepare calibration curves. Results: Validation criteria were met (linear range: 0.02-1.00 µg/ml sulfatides [0.02-1.00 ng/ml lysosulfatide]); accuracy/precision were within ±15%. CSF from 21 children with metachromatic leukodystrophy had significantly higher sulfatide and lysosulfatide concentrations than CSF from 60 healthy children (p < 0.0001). Worse motor function correlated with higher CSF sulfatide (p = 0.0087) and lysosulfatide (p = 0.0034) levels. Conclusion: These assays, validated in patients with metachromatic leukodystrophy, may aid the clinical assessment of therapeutic responses.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Cromatografia Líquida/métodos , Leucodistrofia Metacromática/diagnóstico por imagem , Psicosina/análogos & derivados , Sulfoglicoesfingolipídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Líquido Cefalorraquidiano/citologia , Criança , Humanos , Psicosina/metabolismo
16.
Pract Neurol ; 20(4): 280-286, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32434903

RESUMO

Genetic and acquired disorders of white matter comprise a diverse group of conditions, with often overlapping clinical and radiological findings. Patients present with a variable combination of cognitive impairment, ataxia, spasticity or movement disorders, among others. There are many genetic causes, and the route to diagnosis involves comprehensive clinical assessment, radiological expertise, metabolic investigations and finally genetic studies. It is essential not to miss the treatable acquired causes. In this review, we present a practical approach to investigating patients with acquired and genetic disorders of white matter, based on the experience of a large international referral centre. We present a guide for clinicians, including pitfalls of testing, clinical pearls and where to seek advice.


Assuntos
Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/genética , Substância Branca/diagnóstico por imagem , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética , Adulto , Idoso , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Diagnóstico Diferencial , Feminino , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/genética , Infecções por HIV/complicações , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/genética , Humanos , Leucodistrofia Metacromática/complicações , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Leucoencefalopatias/complicações , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/genética
18.
Magn Reson Med ; 82(6): 2286-2298, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31273856

RESUMO

PURPOSE: In diffusion MRI, dropout refers to a strong attenuation of the measured signal that is caused by bulk motion during the diffusion encoding. When left uncorrected, dropout will be erroneously interpreted as high diffusivity in the affected direction. We present a method to automatically detect dropout, and to replace the affected measurements with imputed values. METHODS: Signal dropout is detected by deriving an outlier score from a simple harmonic oscillator-based reconstruction and estimation (SHORE) fit of all measurements. The outlier score is defined to detect measurements that are substantially lower than predicted by SHORE in a relative sense, while being less sensitive to measurement noise in cases of weak baseline signal. A second SHORE fit is based on detected inliers only, and its predictions are used to replace outliers. RESULTS: Our method is shown to reliably detect and accurately impute dropout in simulated data, and to achieve plausible results in corrupted in vivo dMRI measurements. Computational effort is much lower than with previously proposed alternatives. CONCLUSIONS: Deriving a suitable outlier score from SHORE results in a fast and accurate method for detection and imputation of dropout in diffusion MRI. It requires measurements with multiple b values (such as multi-shell or DSI), but is independent from the models used for analysis (such as DKI, NODDI, deconvolution, etc.).


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Aumento da Imagem/métodos , Adulto , Algoritmos , Artefatos , Criança , Imagem de Tensor de Difusão , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Análise dos Mínimos Quadrados , Leucodistrofia Metacromática/diagnóstico por imagem , Masculino , Método de Monte Carlo , Movimento (Física) , Oscilometria , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Orphanet J Rare Dis ; 14(1): 136, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186049

RESUMO

BACKGROUND: Metachromatic Leukodystrophy (MLD) is a rare autosomal-recessive lysosomal storage disorder caused by mutations in the ARSA gene. While interventional trials often use untreated siblings as controls, the genotype-phenotype correlation is only partly understood, and the variability of the clinical course between siblings is unclear with some evidence for a discrepant clinical course in juvenile patients. The aim of this study was to systematically investigate the phenotypic variation in MLD siblings in comparison to the variability in a larger MLD cohort and to case reports published in literature. RESULTS: Detailed clinical information was available from 12 sibling-pairs (3 late-infantile, 9 juvenile) and 61 single patients (29 late-infantile, 32 juvenile). Variability of age at onset was similar between the siblings and randomly chosen pairs of the remaining cohort (no statistically different Euclidean distances). However, in children with juvenile MLD both the type of first symptoms and the dynamic of the disease were less variable between siblings compared to the general cohort. In late-infantile patients, type of first symptoms and dynamic of disease were similarly homogeneous between siblings and the whole MLD cohort. Thirteen published case reports of families with affected siblings with MLD are presented with similar findings. CONCLUSIONS: In a systematic analysis of phenotypic variation in families with MLD, siblings with the late-infantile form showed a similar variability as unrelated pairs of children with late-infantile MLD, whereas siblings with juvenile MLD showed a more homogeneous phenotype regarding type of first symptoms and disease evolution in comparison to unrelated children with juvenile MLD, but not regarding their age at onset. These results are highly relevant with respect to the evaluation of treatment effects and for counseling of families with affected siblings.


Assuntos
Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Cognição/fisiologia , Estudos de Associação Genética , Genótipo , Humanos , Espectroscopia de Ressonância Magnética , Irmãos
20.
Biomed Res Int ; 2019: 7235914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834272

RESUMO

Leukodystrophies (LDs) are heterogeneous genetic disorders characterized by abnormal white matter in the central nervous system. Some of the LDs are progressive and often fatal. In general, LD is primarily diagnosed based on the neuroimaging; however, definitive diagnosis of the LD type is done using genetic testing such as next-generation sequencing. The aim of this study is to identify the genetic causes of LD in two independent Jordanian cases that exhibit MRI findings confirming LD with no definitive diagnosis using whole exome sequencing (WES). The most likely causative variants were identified. In one case, the homozygous pathogenic variant NM_000049.2:c.914C>A;p.Ala305Glu, which is previously reported in ClinVar, in the gene ASPA was identified causing Canavan disease. In the second case, the homozygous novel variant NM_000487.5:c.256C>G;p.Arg86Gly in the gene ARSA was identified causing metachromatic leukodystrophy. The two variants segregate in their families. The phenotypes of the two studied cases overlap with assigned diseases. The present study raises the importance of using WES to identify the precise neurodevelopmental diseases in Jordan.


Assuntos
Amidoidrolases/genética , Cerebrosídeo Sulfatase/genética , Sequenciamento do Exoma , Leucodistrofia Metacromática/genética , Adulto , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Jordânia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/patologia , Masculino , Mutação , Linhagem , Fenótipo , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...